
The influence of chain length upon the activity of 5-hydroxytryptamine

The molecular requirements for 5-hydroxytryptamine (5-HT)-like contractile activity in isolated tissue preparations such as the rat uterus or stomach fundus are specific. Structure-activity relations in the tryptamine series demonstrate that the 5-hydroxyl group and a primary amino function are essential for high activity (Barlow & Khan, 1959; Vane, 1959; Bertaccini & Zamboli, 1961), while replacement of the indolic imino moiety of 5-HT (I, n = 2) by bio-isosteric groups such as methylene or thio has a profound and deleterious effect on activity (Pinder, Green & Thompson, 1971). Relatively little information is available about the influence of chain length except in the homologous series of indole-3-alkylamines, where a marked peak of activity occurs with tryptamine itself (Vane, 1959). This trend is also confirmed with the more potent series of 5-methoxylated derivatives, in which 5-methoxytryptamine is respectively 5-10 and 500-1000 times more potent than the corresponding 3-(3-aminopropyl) and 3-(4-aminobutyl) compounds in producing contractions of the rat uterus (Arutyunyan, 1967). These studies, however, used compounds lacking the necessary 5-hydroxy group, and we now report the preparation and some pharmacology of three homologues of 5-HT, which contain one- (I, n = 1), three- (I, n = 3), or fourcarbon (I, n = 4) alkylamine side-chains.

3-(5-Benzyloxyindol-3-yl)propionic acid (Justoni & Pessina, 1957) and 4-(5-benzyloxyindol-3-yl)butyric acid (Zenitz, 1966) were converted to their amides by treatment at 0° with phosphorus pentachloride followed by addition, also at 0° , to ammonium hydroxide. 3-(5-Benzyloxyindol-3-yl)propionamide, obtained in 65% yield, had m.p. 122-123° (benzene) (Found: C, 73.6; H, 6.4; N, 9.4; C₁₈H₁₈N₂O₂ requires C, 73·45; H, 6·2; N, 9·5%); 4-(5-benzyloxyindol-3-yl)butyramide, 59% yield, had m.p. 120-121° (benzene) (Found: C, 74·1; H, 6·6; N, 8·9; C₁₉H₂₀N₂O₂ requires C, 74.0; H, 6.5; N, 9.1%). Reduction with lithium aluminium hydride in ether afforded the respective amines; 3-(3-aminopropyl)-5-benzyloxyindole hydrochloride, yield 74%, m.p. 162-163° (ethanol-ether) (Found: C, 67.8; H, 6.7; N, 8.9; $C_{18}H_{20}N_2O$ ·HCl requires C, 68·2; H, 6·7; N, 8·8%); and 3-(4-aminobutyl)-5-benzyl-oxyindole hydrochloride, yield 67%, m.p. 202–203° (ethanol-ether) (Found: C, 68·9; H, 6.9; N, 8.5; C₁₉H₂₂N₂O·HCl requires C, 69.0; H, 7.0; N, 8.45 %). Hydrogenolysis at room temperature and atmospheric pressure, with 10% palladized charcoal as catalyst, quantitatively gave 3-(3-aminopropyl)-5-hydroxyindole hydrochloride, m.p. 161-162° (propan-2-ol) (Found: C, 58·2; H, 6·5; N, 12·0; C₁₁H₁₄N₂O·HCl requires C, 58.3; H, 6.7; N, 12.4%); and 3-(4-aminobutyl)-5-hydroxyindole hydrochloride, m.p. 100-101° (propan-2-ol-ether) (Found: C, 59.6; H, 7.1; N, 11.4; $C_{12}H_{16}N_2O$ ·HCl requires C, 59.9; H, 7.1; N, 11.6%).

3-Aminomethyl-5-benzyloxyindole hydrochloride, m.p. $177-179^{\circ}$ (ethanol-ether), was obtained in 46% yield by hydrogenation at 2.8 kg cm⁻² of 5-benzyloxyindole-3-carbaldoxime (Young, 1958) in ethanol-hydrochloric acid, using 10% palladized charcoal as catalyst (Found: C, 66.6; H, 5.7; N, 9.4. C₁₆H₁₆N₂O·HCl requires C, 66.55; H, 5.9; N, 9.7%). Subsequent hydrogenolysis in neutral ethanol afforded a poor yield (<10%) of the easily oxidized 3-aminomethyl-5-hydroxyindole as its hydrogen oxalate, m.p. 150° (decomp.) (Found: C, 52.0; H, 4.8; N, 11.2. C₉H₁₀N₂O. C₂H₂O₄ requires C, 52.4; H, 4.8; N, 11.1%).

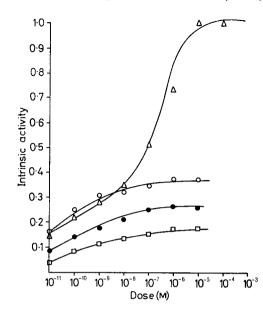


FIG. 1. Dose-response curves for the agonistic activity of 5-HT homologues in the rat stomach fundus strip. \triangle , 5-HT; \square , I(n=1); \bigcirc , I(n=3); \bigcirc , I(n=4). Range of s.e. for all points shown was 0.002-0.03.

5-HT-like activity was measured by contraction of rat fundus strips (Vane, 1959; Pinder & others, 1971), and is represented diagrammatically in Fig. 1. The intrinsic activities relative to 5-HT, \pm standard error of the mean, for the homologues with alkylamine chain lengths of n = 1, n = 3, and n = 4 are respectively 0.176 \pm 0.01; 0.263 \pm 0.005, and 0.373 \pm 0.009. These results demonstrate the strict molecular requirements of the 5-HT receptor in the rat stomach fundus, and confirm the results of Vane (1959) for the tryptamines without a 5-hydroxy substituent. Clearly, an ethylamine side-chain is a prerequisite for agonist activity on such receptors.

Chemical Defence Establishment, Porton Down, Salisbury, Wiltshire. R. M. PINDER D. M. GREEN K. BREWSTER P. B. J. THOMPSON

June 18, 1973

REFERENCES

ARUTYUNYAN, G. S. (1967). Farmakol. Toksikol., 30, 174–178 [Chem. Abstr., 1967, 67, 10037].
BARLOW, R. B. & KHAN, I. (1959). Br. J. Pharmac. Chemother., 14, 99–107; 265–272.
BERTACCINI, G. & ZAMBOLI, P. (1961). Archs int. Pharmacodyn. Thér., 133, 138–156.
JUSTONI, R. & PESSINA, R. (1957). Brit. Pat. 770,370 [Chem. Abstr., 1957, 51, 14822].
PINDER, R. M., GREEN, D. M. & THOMPSON, P. B. J. (1971). J. medl Chem., 14, 626–628.
VANE, J. R. (1959). Br. J. Pharmac. Chemother., 14, 87–98.
YOUNG, E. H. P. (1958). J. chem. Soc., 3493–3496.
ZENITZ, B. L. (1966). U.S. Pat. 3,238,215. [Chem. Abstr., 1966, 65, 7148].